更新時間:2022-05-03 09:36:00 來源:大牛教育成考網(wǎng) 點擊量:
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分150分,考試時間120分鐘。
第Ⅰ卷(選擇題 共75分)
一、選擇題:本大題共15分,每小題5分,共75分。在每小題列出的四個選取項中,只有一項是符合題目要求的。
(1)設M={x≥2,x∈R},P={x|-x-2=0,x∈R}.則M∪P是
(A)Φ (B)M (C)M∪{-1} (D)P
(2)下列函數(shù)中,為偶函數(shù)且在(0,+∞)內(nèi)單調(diào)減函數(shù)的是
(A)y=cosx (B)y=+1 (C)y=1- (D) y=+
(3)函數(shù)f(x)=的定義域是
(A)(- ∞,0) (B)(-∞,0] (C)(0,+∞) (D)[0, +∞)
(4)不等式組{ < 的解集是<
(A)x>-7 (B)x< (C)-7< (D)Φ
(5)已知a>b,則下列等式中恒成立的是
(A)loga>logb (B)>b (C)<( (D)>
(6)已知等差數(shù)列{a},a=2a-3n+1,則第5項a等于
(A)23 (B)20 (C)17 (D)14
(7)函數(shù)y=和y=的圖像關于
(A)坐標原點對稱 (B)x軸對稱 (C)y軸對稱 (D)直線y=x對稱
(8)如果0<1,那么a的取值范圍是
(A)0< (B)≤a<1 (C)1<3 (D)a>3
(9)已知橢圓上一點到兩焦點(-2,0),(2,0)的距離之和等于6,則橢圓的短軸長為
(A)5 (B)10 (C) (D)2
(10)甲乙兩人各進行一次射擊,甲擊中目標的概率是0.3,乙擊中目標的概率是0.6,那么兩人都擊中目標的概率是
(A)0.18 (B)0.6 (C)0.9 (D)1
(11)函數(shù)y=sin2x+cos2x是
(A)偶函數(shù) (B)奇函數(shù)
(C)非奇非偶函數(shù) (D)既是奇函數(shù)又是偶函數(shù)
(12)關于x的方程的兩根之和為8,兩根之積為-4,則
(A)a=-2,b=-2 (B)a=-2,b=2 (C)a=2,b=-2 (D)a=2,b=2
(13)用0,1,2,3這四個數(shù)字組成個位數(shù)不是1的沒有重復數(shù)字的四位數(shù)共有
(A)16個 (B)14個 (C)12個 (D)10個
(14)已知點P(4,9),P(6,3),⊙O是以線段PP為直徑的圓,則圓的方程為
(A)(x-5)+(y-6)=10 (B)(x-5)+(y-6)=40
(C)(x+1)+(y-3)=10 (D)(x+1)+(y-3)=40
(15)如果k是非零的實常數(shù),則下列命題中正確的是
(A)y=是增函數(shù) (B)y=增函數(shù)
(C)y=(k-k+1) (D)y=log是增函數(shù)
第Ⅱ卷(非選擇題 共75分)
二 填空題:本大題共4個小題,每小題5分,共20分,把答案填在橫線上。
(16)一個向量a把點(-1,-1)平移到(-1,0),則點(-1,0)平移到 。
(17)已知sina+cosa=,則tana+cosa= 。
(18)過點(2,-3)且與直線2x+y-3=0垂直的直線方程是 。
(19)隨機擲一骰子,則所有骰子的點子數(shù)ξ的期望是 。
三、解答題:本大題共5小題,共55分,解答應寫出推理、演算步驟。
(20)(本小題滿分10分) 設函數(shù)y=ax+bx+c的最大值是8,并且其圖像通過A(-2,0)和β(1,6)兩點,試寫出此函數(shù)解析式。
(21)(本小題滿分10分) 設α,β是方程(lgx)-lgx-2=0的兩個根,求logβ+logα的值。
(22)(本小題滿分11分) 數(shù)列{a}的通項公式為a=2n-11,問項數(shù)n為多少時,使數(shù)列前n項之和S的值最小,并求S的最小值。
(23)(本小題滿分12分) 在△ABC中,已知BC=1,∠B=π/3,△ABC的面積為,求tanC的值。
(24)(本小題滿分12分) 已知橢圓的中心在坐標原點,焦點在坐標軸上,直線y=x+1與該橢圓相交于P,Q兩點,且OP⊥OQ,∣PQ∣=,求橢圓方程。
?上一篇:成人高考高升專《地理》模擬題
Copyright © 大牛教育成考網(wǎng) 版權所有 粵ICP備18016435號 全國免費咨詢電話:400 166 9192
廣州市天河區(qū)五山路華南理工大學國家科技園金華園區(qū)2樓C208-214室(總部)
此網(wǎng)站信息最終解釋權屬于廣州天資教育科技有限公司
聲明:本站為廣州成考民間交流網(wǎng)站,成人高考動態(tài)請各位考生以省教育考試院、各市成考辦通知為準。